Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect ; 85(4): 418-427, 2022 10.
Article in English | MEDLINE | ID: covidwho-1959736

ABSTRACT

The ongoing global pandemic of Coronavirus disease 2019 (COVID-19) poses a serious threat to human health, with patients reportedly suffering from thrombus, vascular injury and coagulation in addition to acute and diffuse lung injury and respiratory diseases. Angiotensin converting enzyme 2 (ACE2) as the receptor for SARS-CoV-2 entry, is also an important regulator of renin-angiotensin system (RAS) homeostasis, which plays an unsettled role in the pathogenesis of COVID-19. Here, we demonstrated that SARS-CoV-2 Spike protein activated intracellular signals to degrade ACE2 mRNA. The decrease of ACE2 and higher level of angiotensin (Ang) II were verified in COVID-19 patients. High dose of Ang II induced pulmonary artery endothelial cell death in vitro, which was also observed in the lung of COVID-19 patients. Our finding indicates that the downregulation of ACE2 potentially links COVID-19 to the imbalance of RAS.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Down-Regulation , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Cell Res ; 31(12): 1230-1243, 2021 12.
Article in English | MEDLINE | ID: covidwho-1475291

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/mortality , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , ErbB Receptors/metabolism , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Survival Rate , Transcriptome/drug effects , Viral Load/drug effects , Virus Internalization , COVID-19 Drug Treatment
5.
J Hepatol ; 73(3): 566-574, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-208943

ABSTRACT

BACKGROUND & AIMS: Recent data on the coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has begun to shine light on the impact of the disease on the liver. But no studies to date have systematically described liver test abnormalities in patients with COVID-19. We evaluated the clinical characteristics of COVID-19 in patients with abnormal liver test results. METHODS: Clinical records and laboratory results were obtained from 417 patients with laboratory-confirmed COVID-19 who were admitted to the only referral hospital in Shenzhen, China from January 11 to February 21, 2020 and followed up to March 7, 2020. Information on clinical features of patients with abnormal liver tests were collected for analysis. RESULTS: Of 417 patients with COVID-19, 318 (76.3%) had abnormal liver test results and 90 (21.5%) had liver injury during hospitalization. The presence of abnormal liver tests became more pronounced during hospitalization within 2 weeks, with 49 (23.4%), 31 (14.8%), 24 (11.5%) and 51 (24.4%) patients having alanine aminotransferase, aspartate aminotransferase, total bilirubin and gamma-glutamyl transferase levels elevated to more than 3× the upper limit of normal, respectively. Patients with abnormal liver tests of hepatocellular type or mixed type at admission had higher odds of progressing to severe disease (odds ratios [ORs] 2.73; 95% CI 1.19-6.3, and 4.44, 95% CI 1.93-10.23, respectively). The use of lopinavir/ritonavir was also found to lead to increased odds of liver injury (OR from 4.44 to 5.03, both p <0.01). CONCLUSION: Patients with abnormal liver tests were at higher risk of progressing to severe disease. The detrimental effects on liver injury mainly related to certain medications used during hospitalization, which should be monitored and evaluated frequently. LAY SUMMARY: Data on liver tests in patients with COVID-19 are scarce. We observed a high prevalence of liver test abnormalities and liver injury in 417 patients with COVID-19 admitted to our referral center, and the prevalence increased substantially during hospitalization. The presence of abnormal liver tests and liver injury were associated with the progression to severe pneumonia. The detrimental effects on liver injury were related to certain medications used during hospitalization, which warrants frequent monitoring and evaluation for these patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Liver Function Tests , Liver/physiopathology , Pneumonia, Viral/physiopathology , Adolescent , Adult , Aged , COVID-19 , Child , China/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Disease Progression , Female , Humans , Liver/injuries , Male , Middle Aged , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Prevalence , SARS-CoV-2 , Time Factors , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL